stm32-metapac

Crates

git

Versions

stm32h7s7l8

Flavors

๐Ÿ“ฃ We want to hear from you! Fill the Rust Embedded 2024 micro-survey.

Struct stm32_metapac::cryp::regs::Sr

#[repr(transparent)]
pub struct Sr(pub u32);
Expand description

status register.

Tuple Fieldsยง

ยง0: u32

Implementationsยง

ยง

impl Sr

pub const fn ifem(&self) -> bool

Input FIFO empty.

pub fn set_ifem(&mut self, val: bool)

Input FIFO empty.

pub const fn ifnf(&self) -> bool

Input FIFO not full.

pub fn set_ifnf(&mut self, val: bool)

Input FIFO not full.

pub const fn ofne(&self) -> bool

Output FIFO not empty.

pub fn set_ofne(&mut self, val: bool)

Output FIFO not empty.

pub const fn offu(&self) -> bool

Output FIFO full.

pub fn set_offu(&mut self, val: bool)

Output FIFO full.

pub const fn busy(&self) -> bool

Busy bit.

pub fn set_busy(&mut self, val: bool)

Busy bit.

pub const fn kerf(&self) -> bool

Key error flag This read-only bit is set by hardware when key information failed to load into key registers. KERF is triggered upon any of the following errors: CRYP_KxR/LR register write does not respect the correct order (refer to Section 60.4.16: CRYP key registers for details). CRYP fails to load the key shared by SAES peripheral (KMOD = 0x2). KERF must be cleared by the application software, otherwise KEYVALID cannot be set. It can be done through IPRST bit of CRYP_CR, or when a correct key writing sequence starts.

pub fn set_kerf(&mut self, val: bool)

Key error flag This read-only bit is set by hardware when key information failed to load into key registers. KERF is triggered upon any of the following errors: CRYP_KxR/LR register write does not respect the correct order (refer to Section 60.4.16: CRYP key registers for details). CRYP fails to load the key shared by SAES peripheral (KMOD = 0x2). KERF must be cleared by the application software, otherwise KEYVALID cannot be set. It can be done through IPRST bit of CRYP_CR, or when a correct key writing sequence starts.

pub const fn keyvalid(&self) -> bool

Key valid flag This read-only bit is set by hardware when the key of size defined by KEYSIZE is loaded in CRYP_KxR/LR key registers. The CRYPEN bit can only be set when KEYVALID is set. In normal mode when KMOD[1:0] is at zero, the key must be written in the key registers in the correct sequence, otherwise the KERF flag is set and KEYVALID remains cleared. When KMOD[1:0] is different from zero, the BUSY flag is automatically set by CRYP. When the key is loaded successfully, BUSY is cleared and KEYVALID set. Upon an error, KERF is set, BUSY cleared and KEYVALID remains cleared. If set, KERF must be cleared, otherwise KEYVALID cannot be set. For further information on key loading, refer to Section 60.4.16: CRYP key registers.

pub fn set_keyvalid(&mut self, val: bool)

Key valid flag This read-only bit is set by hardware when the key of size defined by KEYSIZE is loaded in CRYP_KxR/LR key registers. The CRYPEN bit can only be set when KEYVALID is set. In normal mode when KMOD[1:0] is at zero, the key must be written in the key registers in the correct sequence, otherwise the KERF flag is set and KEYVALID remains cleared. When KMOD[1:0] is different from zero, the BUSY flag is automatically set by CRYP. When the key is loaded successfully, BUSY is cleared and KEYVALID set. Upon an error, KERF is set, BUSY cleared and KEYVALID remains cleared. If set, KERF must be cleared, otherwise KEYVALID cannot be set. For further information on key loading, refer to Section 60.4.16: CRYP key registers.

Trait Implementationsยง

ยง

impl Clone for Sr

ยง

fn clone(&self) -> Sr

Returns a copy of the value. Read more
1.0.0 ยท sourceยง

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
ยง

impl Default for Sr

ยง

fn default() -> Sr

Returns the โ€œdefault valueโ€ for a type. Read more
ยง

impl PartialEq for Sr

ยง

fn eq(&self, other: &Sr) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 ยท sourceยง

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
ยง

impl Copy for Sr

ยง

impl Eq for Sr

ยง

impl StructuralEq for Sr

ยง

impl StructuralPartialEq for Sr

Auto Trait Implementationsยง

Blanket Implementationsยง

sourceยง

impl<T> Any for T
where T: 'static + ?Sized,

sourceยง

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
sourceยง

impl<T> Borrow<T> for T
where T: ?Sized,

sourceยง

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
sourceยง

impl<T> BorrowMut<T> for T
where T: ?Sized,

sourceยง

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
sourceยง

impl<T> From<T> for T

sourceยง

fn from(t: T) -> T

Returns the argument unchanged.

sourceยง

impl<T, U> Into<U> for T
where U: From<T>,

sourceยง

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

sourceยง

impl<T, U> TryFrom<U> for T
where U: Into<T>,

ยง

type Error = Infallible

The type returned in the event of a conversion error.
sourceยง

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
sourceยง

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

ยง

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
sourceยง

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.