stm32-metapac

Crates

git

Versions

stm32h7s7l8

Flavors

๐Ÿ“ฃ We want to hear from you! Fill the Rust Embedded 2024 micro-survey.

Struct stm32_metapac::gpdma::regs::ChLlr

#[repr(transparent)]
pub struct ChLlr(pub u32);
Expand description

GPDMA channel 15 alternate linked-list address register

Tuple Fieldsยง

ยง0: u32

Implementationsยง

ยง

impl ChLlr

pub const fn la(&self) -> u16

pointer (16-bit low-significant address) to the next linked-list data structure. If UT1 = UT2 = UB1 = USA = UDA = ULL = 0 and if LA[15:20] = 0, the current LLI is the last one. The channel transfer is completed without any update of the linked-list GPDMA register file. Else, this field is the pointer to the memory address offset from which the next linked-list data structure is automatically fetched from, once the data transfer is completed, in order to conditionally update the linked-list GPDMA internal register file (CH[x].CTR1, CH[x].TR2, CH[x].BR1, CH[x].SAR, CH[x].DAR and CH[x].LLR). Note: The user must program the pointer to be 32-bit aligned. The two low-significant bits are write ignored.

pub fn set_la(&mut self, val: u16)

pointer (16-bit low-significant address) to the next linked-list data structure. If UT1 = UT2 = UB1 = USA = UDA = ULL = 0 and if LA[15:20] = 0, the current LLI is the last one. The channel transfer is completed without any update of the linked-list GPDMA register file. Else, this field is the pointer to the memory address offset from which the next linked-list data structure is automatically fetched from, once the data transfer is completed, in order to conditionally update the linked-list GPDMA internal register file (CH[x].CTR1, CH[x].TR2, CH[x].BR1, CH[x].SAR, CH[x].DAR and CH[x].LLR). Note: The user must program the pointer to be 32-bit aligned. The two low-significant bits are write ignored.

pub const fn ull(&self) -> bool

Update CH[x].LLR register from memory. This bit is used to control the update of CH[x].LLR from the memory during the link transfer.

pub fn set_ull(&mut self, val: bool)

Update CH[x].LLR register from memory. This bit is used to control the update of CH[x].LLR from the memory during the link transfer.

pub const fn ub2(&self) -> bool

Update CH[x].BR2 from memory. This bit controls the update of CH[x].BR2 from the memory during the link transfer.

pub fn set_ub2(&mut self, val: bool)

Update CH[x].BR2 from memory. This bit controls the update of CH[x].BR2 from the memory during the link transfer.

pub const fn ut3(&self) -> bool

Update CH[x].TR3 from memory. This bit controls the update of CH[x].TR3 from the memory during the link transfer.

pub fn set_ut3(&mut self, val: bool)

Update CH[x].TR3 from memory. This bit controls the update of CH[x].TR3 from the memory during the link transfer.

pub const fn uda(&self) -> bool

Update CH[x].DAR register from memory. This bit is used to control the update of CH[x].DAR from the memory during the link transfer.

pub fn set_uda(&mut self, val: bool)

Update CH[x].DAR register from memory. This bit is used to control the update of CH[x].DAR from the memory during the link transfer.

pub const fn usa(&self) -> bool

update CH[x].SAR from memory. This bit controls the update of CH[x].SAR from the memory during the link transfer.

pub fn set_usa(&mut self, val: bool)

update CH[x].SAR from memory. This bit controls the update of CH[x].SAR from the memory during the link transfer.

pub const fn ub1(&self) -> bool

Update CH[x].BR1 from memory. This bit controls the update of CH[x].BR1 from the memory during the link transfer. If UB1 = 0 and if CH[x].LLR โ‰  0, the linked-list is not completed. CH[x].BR1.BNDT[15:0] is then restored to the programmed value after data transfer is completed and before the link transfer.

pub fn set_ub1(&mut self, val: bool)

Update CH[x].BR1 from memory. This bit controls the update of CH[x].BR1 from the memory during the link transfer. If UB1 = 0 and if CH[x].LLR โ‰  0, the linked-list is not completed. CH[x].BR1.BNDT[15:0] is then restored to the programmed value after data transfer is completed and before the link transfer.

pub const fn ut2(&self) -> bool

Update CH[x].TR2 from memory. This bit controls the update of CH[x].TR2 from the memory during the link transfer.

pub fn set_ut2(&mut self, val: bool)

Update CH[x].TR2 from memory. This bit controls the update of CH[x].TR2 from the memory during the link transfer.

pub const fn ut1(&self) -> bool

Update CH[x].TR1 from memory. This bit controls the update of CH[x].TR1 from the memory during the link transfer.

pub fn set_ut1(&mut self, val: bool)

Update CH[x].TR1 from memory. This bit controls the update of CH[x].TR1 from the memory during the link transfer.

Trait Implementationsยง

ยง

impl Clone for ChLlr

ยง

fn clone(&self) -> ChLlr

Returns a copy of the value. Read more
1.0.0 ยท sourceยง

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
ยง

impl Default for ChLlr

ยง

fn default() -> ChLlr

Returns the โ€œdefault valueโ€ for a type. Read more
ยง

impl PartialEq for ChLlr

ยง

fn eq(&self, other: &ChLlr) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 ยท sourceยง

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
ยง

impl Copy for ChLlr

ยง

impl Eq for ChLlr

ยง

impl StructuralEq for ChLlr

ยง

impl StructuralPartialEq for ChLlr

Auto Trait Implementationsยง

Blanket Implementationsยง

sourceยง

impl<T> Any for T
where T: 'static + ?Sized,

sourceยง

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
sourceยง

impl<T> Borrow<T> for T
where T: ?Sized,

sourceยง

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
sourceยง

impl<T> BorrowMut<T> for T
where T: ?Sized,

sourceยง

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
sourceยง

impl<T> From<T> for T

sourceยง

fn from(t: T) -> T

Returns the argument unchanged.

sourceยง

impl<T, U> Into<U> for T
where U: From<T>,

sourceยง

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

sourceยง

impl<T, U> TryFrom<U> for T
where U: Into<T>,

ยง

type Error = Infallible

The type returned in the event of a conversion error.
sourceยง

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
sourceยง

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

ยง

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
sourceยง

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.