Struct stm32_metapac::lpdma::regs::ChTr1
#[repr(transparent)]pub struct ChTr1(pub u32);
Expand description
LPDMA channel 8 transfer register 1
Tuple Fields§
§0: u32
Implementations§
§impl ChTr1
impl ChTr1
pub const fn sdw(&self) -> Dw
pub const fn sdw(&self) -> Dw
binary logarithm of the source data width of a burst in bytes. Note: Setting a 8-byte data width causes a user setting error to be reported and no transfer is issued. A source block size must be a multiple of the source data width (CH[x].BR1.BNDT[2:0] versus SDW_LOG2[1:0]). Otherwise, a user setting error is reported and no transfer is issued. A source single transfer must have an aligned address with its data width (start address CH[x].SAR[2:0] versus SDW_LOG2[1:0]). Otherwise, a user setting error is reported and none transfer is issued.
pub fn set_sdw(&mut self, val: Dw)
pub fn set_sdw(&mut self, val: Dw)
binary logarithm of the source data width of a burst in bytes. Note: Setting a 8-byte data width causes a user setting error to be reported and no transfer is issued. A source block size must be a multiple of the source data width (CH[x].BR1.BNDT[2:0] versus SDW_LOG2[1:0]). Otherwise, a user setting error is reported and no transfer is issued. A source single transfer must have an aligned address with its data width (start address CH[x].SAR[2:0] versus SDW_LOG2[1:0]). Otherwise, a user setting error is reported and none transfer is issued.
pub const fn sinc(&self) -> bool
pub const fn sinc(&self) -> bool
source incrementing burst. The source address, pointed by CH[x].SAR, is kept constant after a burst beat/single transfer or is incremented by the offset value corresponding to a contiguous data after a burst beat/single transfer.
pub fn set_sinc(&mut self, val: bool)
pub fn set_sinc(&mut self, val: bool)
source incrementing burst. The source address, pointed by CH[x].SAR, is kept constant after a burst beat/single transfer or is incremented by the offset value corresponding to a contiguous data after a burst beat/single transfer.
pub const fn pam(&self) -> Pam
pub const fn pam(&self) -> Pam
padding/alignment mode. If DDW[1:0] = SDW_LOG2[1:0]: if the data width of a burst destination transfer is equal to the data width of a burst source transfer, these bits are ignored. Else: - Case 1: If destination data width > source data width. 1x: successive source data are FIFO queued and packed at the destination data width, in a left (LSB) to right (MSB) order (named little endian), before a destination transfer. - Case 2: If destination data width < source data width. 1x: source data is FIFO queued and unpacked at the destination data width, to be transferred in a left (LSB) to right (MSB) order (named little endian) to the destination. Note:
pub fn set_pam(&mut self, val: Pam)
pub fn set_pam(&mut self, val: Pam)
padding/alignment mode. If DDW[1:0] = SDW_LOG2[1:0]: if the data width of a burst destination transfer is equal to the data width of a burst source transfer, these bits are ignored. Else: - Case 1: If destination data width > source data width. 1x: successive source data are FIFO queued and packed at the destination data width, in a left (LSB) to right (MSB) order (named little endian), before a destination transfer. - Case 2: If destination data width < source data width. 1x: source data is FIFO queued and unpacked at the destination data width, to be transferred in a left (LSB) to right (MSB) order (named little endian) to the destination. Note:
pub const fn ssec(&self) -> bool
pub const fn ssec(&self) -> bool
security attribute of the LPDMA transfer from the source. If SECCFGR.SECx = 1 and the access is secure: This is a secure register bit. This bit can only be read by a secure software. This bit must be written by a secure software when SECCFGR.SECx =1 . A secure write is ignored when SECCFGR.SECx = 0. When SECCFGR.SECx is de-asserted, this SSEC bit is also de-asserted by hardware (on a secure reconfiguration of the channel as non-secure), and the LPDMA transfer from the source is non-secure.
pub fn set_ssec(&mut self, val: bool)
pub fn set_ssec(&mut self, val: bool)
security attribute of the LPDMA transfer from the source. If SECCFGR.SECx = 1 and the access is secure: This is a secure register bit. This bit can only be read by a secure software. This bit must be written by a secure software when SECCFGR.SECx =1 . A secure write is ignored when SECCFGR.SECx = 0. When SECCFGR.SECx is de-asserted, this SSEC bit is also de-asserted by hardware (on a secure reconfiguration of the channel as non-secure), and the LPDMA transfer from the source is non-secure.
pub const fn ddw(&self) -> Dw
pub const fn ddw(&self) -> Dw
binary logarithm of the destination data width of a burst, in bytes. Note: Setting a 8-byte data width causes a user setting error to be reported and none transfer is issued. A destination burst transfer must have an aligned address with its data width (start address CH[x].DAR[2:0] and address offset CH[x].TR3.DAO[2:0], versus DDW[1:0]). Otherwise a user setting error is reported and no transfer is issued.
pub fn set_ddw(&mut self, val: Dw)
pub fn set_ddw(&mut self, val: Dw)
binary logarithm of the destination data width of a burst, in bytes. Note: Setting a 8-byte data width causes a user setting error to be reported and none transfer is issued. A destination burst transfer must have an aligned address with its data width (start address CH[x].DAR[2:0] and address offset CH[x].TR3.DAO[2:0], versus DDW[1:0]). Otherwise a user setting error is reported and no transfer is issued.
pub const fn dinc(&self) -> bool
pub const fn dinc(&self) -> bool
destination incrementing burst. The destination address, pointed by CH[x].DAR, is kept constant after a burst beat/single transfer, or is incremented by the offset value corresponding to a contiguous data after a burst beat/single transfer.
pub fn set_dinc(&mut self, val: bool)
pub fn set_dinc(&mut self, val: bool)
destination incrementing burst. The destination address, pointed by CH[x].DAR, is kept constant after a burst beat/single transfer, or is incremented by the offset value corresponding to a contiguous data after a burst beat/single transfer.
pub const fn dsec(&self) -> bool
pub const fn dsec(&self) -> bool
security attribute of the LPDMA transfer to the destination. If SECCFGR.SECx = 1 and the access is secure: This is a secure register bit. This bit can only be read by a secure software. This bit must be written by a secure software when SECCFGR.SECx = 1. A secure write is ignored when SECCFGR.SECx = 0. When SECCFGR.SECx is de-asserted, this DSEC bit is also de-asserted by hardware (on a secure reconfiguration of the channel as non-secure), and the LPDMA transfer to the destination is non-secure.
pub fn set_dsec(&mut self, val: bool)
pub fn set_dsec(&mut self, val: bool)
security attribute of the LPDMA transfer to the destination. If SECCFGR.SECx = 1 and the access is secure: This is a secure register bit. This bit can only be read by a secure software. This bit must be written by a secure software when SECCFGR.SECx = 1. A secure write is ignored when SECCFGR.SECx = 0. When SECCFGR.SECx is de-asserted, this DSEC bit is also de-asserted by hardware (on a secure reconfiguration of the channel as non-secure), and the LPDMA transfer to the destination is non-secure.
Trait Implementations§
impl Copy for ChTr1
impl Eq for ChTr1
impl StructuralPartialEq for ChTr1
Auto Trait Implementations§
impl Freeze for ChTr1
impl RefUnwindSafe for ChTr1
impl Send for ChTr1
impl Sync for ChTr1
impl Unpin for ChTr1
impl UnwindSafe for ChTr1
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)