stm32-metapac

Crates

git

Versions

stm32u595qj

Flavors

Struct stm32_metapac::flash::regs::Secsr

#[repr(transparent)]
pub struct Secsr(pub u32);
Expand description

FLASH secure status register

Tuple Fields§

§0: u32

Implementations§

§

impl Secsr

pub const fn eop(&self) -> bool

Secure end of operation This bit is set by hardware when one or more Flash memory secure operation (program/erase) has been completed successfully. This bit is set only if the secure end of operation interrupts are enabled (EOPIE = 1 in FLASH_SECCR). This bit is cleared by writing 1.

pub fn set_eop(&mut self, val: bool)

Secure end of operation This bit is set by hardware when one or more Flash memory secure operation (program/erase) has been completed successfully. This bit is set only if the secure end of operation interrupts are enabled (EOPIE = 1 in FLASH_SECCR). This bit is cleared by writing 1.

pub const fn operr(&self) -> bool

Secure operation error This bit is set by hardware when a Flash memory secure operation (program/erase) completes unsuccessfully. This bit is set only if secure error interrupts are enabled (SECERRIE = 1). This bit is cleared by writing 1.

pub fn set_operr(&mut self, val: bool)

Secure operation error This bit is set by hardware when a Flash memory secure operation (program/erase) completes unsuccessfully. This bit is set only if secure error interrupts are enabled (SECERRIE = 1). This bit is cleared by writing 1.

pub const fn progerr(&self) -> bool

Secure programming error This bit is set by hardware when a secure quad-word address to be programmed contains a value different from all 1 before programming, except if the data to write is all 0. This bit is cleared by writing 1.

pub fn set_progerr(&mut self, val: bool)

Secure programming error This bit is set by hardware when a secure quad-word address to be programmed contains a value different from all 1 before programming, except if the data to write is all 0. This bit is cleared by writing 1.

pub const fn wrperr(&self) -> bool

Secure write protection error This bit is set by hardware when an secure address to be erased/programmed belongs to a write-protected part (by WRP, PCROP, HDP or RDP level 1) of the Flash memory.This bit is cleared by writing 1. Refer to for full conditions of error flag setting.

pub fn set_wrperr(&mut self, val: bool)

Secure write protection error This bit is set by hardware when an secure address to be erased/programmed belongs to a write-protected part (by WRP, PCROP, HDP or RDP level 1) of the Flash memory.This bit is cleared by writing 1. Refer to for full conditions of error flag setting.

pub const fn pgaerr(&self) -> bool

Secure programming alignment error This bit is set by hardware when the first word to be programmed is not aligned with a quad-word address, or the second, third or forth word does not belong to the same quad-word address.This bit is cleared by writing 1.

pub fn set_pgaerr(&mut self, val: bool)

Secure programming alignment error This bit is set by hardware when the first word to be programmed is not aligned with a quad-word address, or the second, third or forth word does not belong to the same quad-word address.This bit is cleared by writing 1.

pub const fn sizerr(&self) -> bool

Secure size error This bit is set by hardware when the size of the access is a byte or half-word during a secure program sequence. Only quad-word programming is allowed by means of successive word accesses.This bit is cleared by writing 1.

pub fn set_sizerr(&mut self, val: bool)

Secure size error This bit is set by hardware when the size of the access is a byte or half-word during a secure program sequence. Only quad-word programming is allowed by means of successive word accesses.This bit is cleared by writing 1.

pub const fn pgserr(&self) -> bool

Secure programming sequence error This bit is set by hardware when programming sequence is not correct. It is cleared by writing 1. Refer to for full conditions of error flag setting.

pub fn set_pgserr(&mut self, val: bool)

Secure programming sequence error This bit is set by hardware when programming sequence is not correct. It is cleared by writing 1. Refer to for full conditions of error flag setting.

pub const fn bsy(&self) -> bool

Secure busy This bit indicates that a Flash memory secure or non-secure operation is in progress. This is set on the beginning of a Flash operation and reset when the operation finishes or when an error occurs.

pub fn set_bsy(&mut self, val: bool)

Secure busy This bit indicates that a Flash memory secure or non-secure operation is in progress. This is set on the beginning of a Flash operation and reset when the operation finishes or when an error occurs.

pub const fn wdw(&self) -> bool

Secure wait data to write This bit indicates that the Flash memory write buffer has been written by a secure or non-secure operation. It is set when the first data is stored in the buffer and cleared when the write is performed in the Flash memory.

pub fn set_wdw(&mut self, val: bool)

Secure wait data to write This bit indicates that the Flash memory write buffer has been written by a secure or non-secure operation. It is set when the first data is stored in the buffer and cleared when the write is performed in the Flash memory.

Trait Implementations§

§

impl Clone for Secsr

§

fn clone(&self) -> Secsr

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl Debug for Secsr

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
§

impl Default for Secsr

§

fn default() -> Secsr

Returns the “default value” for a type. Read more
§

impl PartialEq for Secsr

§

fn eq(&self, other: &Secsr) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl Copy for Secsr

§

impl Eq for Secsr

§

impl StructuralPartialEq for Secsr

Auto Trait Implementations§

§

impl Freeze for Secsr

§

impl RefUnwindSafe for Secsr

§

impl Send for Secsr

§

impl Sync for Secsr

§

impl Unpin for Secsr

§

impl UnwindSafe for Secsr

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

source§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.