Embassy
stm32-metapac

Crates

git

Versions

stm32wba52cg

Flavors

Struct stm32_metapac::rcc::regs::Apb7enr

#[repr(transparent)]
pub struct Apb7enr(pub u32);
Expand description

RCC APB7 peripheral clock enable register

Tuple Fields§

§0: u32

Implementations§

§

impl Apb7enr

pub const fn syscfgen(&self) -> bool

SYSCFG bus clock enable Set and cleared by software. Access can be secured by SYSCFG SYSCFGSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_syscfgen(&mut self, val: bool)

SYSCFG bus clock enable Set and cleared by software. Access can be secured by SYSCFG SYSCFGSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn spi3en(&self) -> bool

SPI3 bus and kernel clocks enable Set and cleared by software. Access can be secured by GTZC_TZSC SPI3SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_spi3en(&mut self, val: bool)

SPI3 bus and kernel clocks enable Set and cleared by software. Access can be secured by GTZC_TZSC SPI3SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn lpuart1en(&self) -> bool

LPUART1 bus and kernel clocks enable Set and cleared by software. Access can be secured by GTZC_TZSC LPUART1SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_lpuart1en(&mut self, val: bool)

LPUART1 bus and kernel clocks enable Set and cleared by software. Access can be secured by GTZC_TZSC LPUART1SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn i2c3en(&self) -> bool

I2C3 bus and kernel clocks enable Set and cleared by software. Access can be secured by GTZC_TZSC I2C3SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_i2c3en(&mut self, val: bool)

I2C3 bus and kernel clocks enable Set and cleared by software. Access can be secured by GTZC_TZSC I2C3SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn lptim1en(&self) -> bool

LPTIM1 bus and kernel clocks enable Set and cleared by software. Access can be secured by GTZC_TZSC LPTIM1SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_lptim1en(&mut self, val: bool)

LPTIM1 bus and kernel clocks enable Set and cleared by software. Access can be secured by GTZC_TZSC LPTIM1SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn rtcapben(&self) -> bool

RTC and TAMP bus clock enable Set and cleared by software. Can only be accessed secure when one or more features in the RTC or TAMP is/are secure. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_rtcapben(&mut self, val: bool)

RTC and TAMP bus clock enable Set and cleared by software. Can only be accessed secure when one or more features in the RTC or TAMP is/are secure. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

Trait Implementations§

§

impl Clone for Apb7enr

§

fn clone(&self) -> Apb7enr

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl Default for Apb7enr

§

fn default() -> Apb7enr

Returns the “default value” for a type. Read more
§

impl PartialEq for Apb7enr

§

fn eq(&self, other: &Apb7enr) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl Copy for Apb7enr

§

impl Eq for Apb7enr

§

impl StructuralEq for Apb7enr

§

impl StructuralPartialEq for Apb7enr

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.