stm32-metapac

Crates

git

Versions

stm32wba54cg

Flavors

Struct stm32_metapac::rcc::regs::Ccipr1

#[repr(transparent)]
pub struct Ccipr1(pub u32);
Expand description

RCC peripherals independent clock configuration register 1

Tuple Fields§

§0: u32

Implementations§

§

impl Ccipr1

pub const fn usart1sel(&self) -> Usart1sel

USART1 kernel clock source selection This bits are used to select the USART1 kernel clock source. Access can be secured by GTZC_TZSC USART1SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: The USART1 is functional in Stop 0 and Stop 1 mode only when the kernel clock is HSI or LSE.

pub fn set_usart1sel(&mut self, val: Usart1sel)

USART1 kernel clock source selection This bits are used to select the USART1 kernel clock source. Access can be secured by GTZC_TZSC USART1SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: The USART1 is functional in Stop 0 and Stop 1 mode only when the kernel clock is HSI or LSE.

pub const fn usart2sel(&self) -> Usartsel

USART2 kernel clock source selection This bits are used to select the USART2 kernel clock source. Access can be secured by GTZC_TZSC USART2SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: The USART2 is functional in Stop 0 and Stop 1 mode only when the kernel clock is HSI or LSE.

pub fn set_usart2sel(&mut self, val: Usartsel)

USART2 kernel clock source selection This bits are used to select the USART2 kernel clock source. Access can be secured by GTZC_TZSC USART2SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: The USART2 is functional in Stop 0 and Stop 1 mode only when the kernel clock is HSI or LSE.

pub const fn i2c1sel(&self) -> I2c1sel

I2C1 kernel clock source selection These bits are used to select the I2C1 kernel clock source. Access can be secured by GTZC_TZSC I2C1SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: The I2C1 is functional in Stop 0 and Stop 1 mode only when the kernel clock is HSI.

pub fn set_i2c1sel(&mut self, val: I2c1sel)

I2C1 kernel clock source selection These bits are used to select the I2C1 kernel clock source. Access can be secured by GTZC_TZSC I2C1SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: The I2C1 is functional in Stop 0 and Stop 1 mode only when the kernel clock is HSI.

pub const fn lptim2sel(&self) -> Lptim2sel

Low-power timer 2 kernel clock source selection These bits are used to select the LPTIM2 kernel clock source. Access can be secured by GTZC_TZSC LPTIM2SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: The LPTIM2 is functional in Stop 0 and Stop 1 mode only when the kernel clock is LSI, LSE or HSI if HSIKERON = 1.

pub fn set_lptim2sel(&mut self, val: Lptim2sel)

Low-power timer 2 kernel clock source selection These bits are used to select the LPTIM2 kernel clock source. Access can be secured by GTZC_TZSC LPTIM2SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: The LPTIM2 is functional in Stop 0 and Stop 1 mode only when the kernel clock is LSI, LSE or HSI if HSIKERON = 1.

pub const fn spi1sel(&self) -> Spi1sel

SPI1 kernel clock source selection These bits are used to select the SPI1 kernel clock source. Access can be secured by GTZC_TZSC SPI1SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: The SPI1 is functional in Stop 0 and Stop 1 mode only when the kernel clock is HSI.

pub fn set_spi1sel(&mut self, val: Spi1sel)

SPI1 kernel clock source selection These bits are used to select the SPI1 kernel clock source. Access can be secured by GTZC_TZSC SPI1SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: The SPI1 is functional in Stop 0 and Stop 1 mode only when the kernel clock is HSI.

pub const fn systicksel(&self) -> Systicksel

SysTick clock source selection These bits are used to select the SysTick clock source. Access can be secured by RCC SYSCLKSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: When LSE or LSI is selected, the AHB frequency must be at least four times higher than the LSI or LSE frequency. In addition, a jitter up to one hclk1 cycle is introduced, due to the LSE or LSI sampling with hclk1 in the SysTick circuitry.

pub fn set_systicksel(&mut self, val: Systicksel)

SysTick clock source selection These bits are used to select the SysTick clock source. Access can be secured by RCC SYSCLKSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: When LSE or LSI is selected, the AHB frequency must be at least four times higher than the LSI or LSE frequency. In addition, a jitter up to one hclk1 cycle is introduced, due to the LSE or LSI sampling with hclk1 in the SysTick circuitry.

pub const fn timicsel(&self) -> Timicsel

Clocks sources for TIM16,TIM17 and LPTIM2 internal input capture When the TIMICSEL bit is set, the TIM16, TIM17 and LPTIM2 internal input capture can be connected to HSI/256. When TIMICSEL is cleared, the HSI, clock sources cannot be selected as TIM16, TIM17 or LPTIM2 internal input capture. Access can be secured by GTZC_TZSC TIM16SEC, TIM17SEC, or LPTIM2SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: The clock division must be disabled (TIMICSEL configured to 0) before selecting or changing a clock sources division.

pub fn set_timicsel(&mut self, val: Timicsel)

Clocks sources for TIM16,TIM17 and LPTIM2 internal input capture When the TIMICSEL bit is set, the TIM16, TIM17 and LPTIM2 internal input capture can be connected to HSI/256. When TIMICSEL is cleared, the HSI, clock sources cannot be selected as TIM16, TIM17 or LPTIM2 internal input capture. Access can be secured by GTZC_TZSC TIM16SEC, TIM17SEC, or LPTIM2SEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV. Note: The clock division must be disabled (TIMICSEL configured to 0) before selecting or changing a clock sources division.

Trait Implementations§

§

impl Clone for Ccipr1

§

fn clone(&self) -> Ccipr1

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl Debug for Ccipr1

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
§

impl Default for Ccipr1

§

fn default() -> Ccipr1

Returns the “default value” for a type. Read more
§

impl PartialEq for Ccipr1

§

fn eq(&self, other: &Ccipr1) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl Copy for Ccipr1

§

impl Eq for Ccipr1

§

impl StructuralPartialEq for Ccipr1

Auto Trait Implementations§

§

impl Freeze for Ccipr1

§

impl RefUnwindSafe for Ccipr1

§

impl Send for Ccipr1

§

impl Sync for Ccipr1

§

impl Unpin for Ccipr1

§

impl UnwindSafe for Ccipr1

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

source§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.