stm32-metapac

Crates

git

Versions

stm32wba54ke

Flavors

Struct stm32_metapac::rcc::regs::Ahb2enr

#[repr(transparent)]
pub struct Ahb2enr(pub u32);
Expand description

RCC AHB2 peripheral clock enable register

Tuple Fields§

§0: u32

Implementations§

§

impl Ahb2enr

pub const fn gpioaen(&self) -> bool

IO port A bus clock enable Set and cleared by software. Access can be secured by GPIOA SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_gpioaen(&mut self, val: bool)

IO port A bus clock enable Set and cleared by software. Access can be secured by GPIOA SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn gpioben(&self) -> bool

IO port B bus clock enable Set and cleared by software. Access can be secured by GPIOB SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_gpioben(&mut self, val: bool)

IO port B bus clock enable Set and cleared by software. Access can be secured by GPIOB SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn gpiocen(&self) -> bool

IO port C bus clock enable Set and cleared by software. Access can be secured by GPIOC SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_gpiocen(&mut self, val: bool)

IO port C bus clock enable Set and cleared by software. Access can be secured by GPIOC SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn gpiohen(&self) -> bool

IO port H bus clock enable Set and cleared by software. Access can be secured by GPIOH SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_gpiohen(&mut self, val: bool)

IO port H bus clock enable Set and cleared by software. Access can be secured by GPIOH SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn aesen(&self) -> bool

AES bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC AESSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_aesen(&mut self, val: bool)

AES bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC AESSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn hashen(&self) -> bool

HASH bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC HASHSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_hashen(&mut self, val: bool)

HASH bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC HASHSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn rngen(&self) -> bool

RNG bus and kernel clocks enable Set and cleared by software. Access can be secured by GTZC_TZSC RNGSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_rngen(&mut self, val: bool)

RNG bus and kernel clocks enable Set and cleared by software. Access can be secured by GTZC_TZSC RNGSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn saesen(&self) -> bool

SAES bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC SAESSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_saesen(&mut self, val: bool)

SAES bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC SAESSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn hsemen(&self) -> bool

HSEM bus clock enable Set and cleared by software. Can only be accessed secure when one or more features in the HSEM is secure. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_hsemen(&mut self, val: bool)

HSEM bus clock enable Set and cleared by software. Can only be accessed secure when one or more features in the HSEM is secure. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn pkaen(&self) -> bool

PKA bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC PKASEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_pkaen(&mut self, val: bool)

PKA bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC PKASEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub const fn sram2en(&self) -> bool

SRAM2 bus clock enable Set and cleared by software. Access can be secured by GTZC_MPCBB2 SECx, INVSECSTATE. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

pub fn set_sram2en(&mut self, val: bool)

SRAM2 bus clock enable Set and cleared by software. Access can be secured by GTZC_MPCBB2 SECx, INVSECSTATE. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.

Trait Implementations§

§

impl Clone for Ahb2enr

§

fn clone(&self) -> Ahb2enr

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl Default for Ahb2enr

§

fn default() -> Ahb2enr

Returns the “default value” for a type. Read more
§

impl PartialEq for Ahb2enr

§

fn eq(&self, other: &Ahb2enr) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl Copy for Ahb2enr

§

impl Eq for Ahb2enr

§

impl StructuralPartialEq for Ahb2enr

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

source§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.