Struct stm32_metapac::rcc::regs::Ahb2enr
#[repr(transparent)]pub struct Ahb2enr(pub u32);
Expand description
RCC AHB2 peripheral clock enable register
Tuple Fields§
§0: u32
Implementations§
§impl Ahb2enr
impl Ahb2enr
pub const fn gpioaen(&self) -> bool
pub const fn gpioaen(&self) -> bool
IO port A bus clock enable Set and cleared by software. Access can be secured by GPIOA SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub fn set_gpioaen(&mut self, val: bool)
pub fn set_gpioaen(&mut self, val: bool)
IO port A bus clock enable Set and cleared by software. Access can be secured by GPIOA SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub const fn gpioben(&self) -> bool
pub const fn gpioben(&self) -> bool
IO port B bus clock enable Set and cleared by software. Access can be secured by GPIOB SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub fn set_gpioben(&mut self, val: bool)
pub fn set_gpioben(&mut self, val: bool)
IO port B bus clock enable Set and cleared by software. Access can be secured by GPIOB SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub const fn gpiocen(&self) -> bool
pub const fn gpiocen(&self) -> bool
IO port C bus clock enable Set and cleared by software. Access can be secured by GPIOC SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub fn set_gpiocen(&mut self, val: bool)
pub fn set_gpiocen(&mut self, val: bool)
IO port C bus clock enable Set and cleared by software. Access can be secured by GPIOC SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub const fn gpiohen(&self) -> bool
pub const fn gpiohen(&self) -> bool
IO port H bus clock enable Set and cleared by software. Access can be secured by GPIOH SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub fn set_gpiohen(&mut self, val: bool)
pub fn set_gpiohen(&mut self, val: bool)
IO port H bus clock enable Set and cleared by software. Access can be secured by GPIOH SECx. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub const fn aesen(&self) -> bool
pub const fn aesen(&self) -> bool
AES bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC AESSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub fn set_aesen(&mut self, val: bool)
pub fn set_aesen(&mut self, val: bool)
AES bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC AESSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub const fn hashen(&self) -> bool
pub const fn hashen(&self) -> bool
HASH bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC HASHSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub fn set_hashen(&mut self, val: bool)
pub fn set_hashen(&mut self, val: bool)
HASH bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC HASHSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub const fn rngen(&self) -> bool
pub const fn rngen(&self) -> bool
RNG bus and kernel clocks enable Set and cleared by software. Access can be secured by GTZC_TZSC RNGSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub fn set_rngen(&mut self, val: bool)
pub fn set_rngen(&mut self, val: bool)
RNG bus and kernel clocks enable Set and cleared by software. Access can be secured by GTZC_TZSC RNGSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub const fn saesen(&self) -> bool
pub const fn saesen(&self) -> bool
SAES bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC SAESSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub fn set_saesen(&mut self, val: bool)
pub fn set_saesen(&mut self, val: bool)
SAES bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC SAESSEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub const fn hsemen(&self) -> bool
pub const fn hsemen(&self) -> bool
HSEM bus clock enable Set and cleared by software. Can only be accessed secure when one or more features in the HSEM is secure. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub fn set_hsemen(&mut self, val: bool)
pub fn set_hsemen(&mut self, val: bool)
HSEM bus clock enable Set and cleared by software. Can only be accessed secure when one or more features in the HSEM is secure. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub const fn pkaen(&self) -> bool
pub const fn pkaen(&self) -> bool
PKA bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC PKASEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub fn set_pkaen(&mut self, val: bool)
pub fn set_pkaen(&mut self, val: bool)
PKA bus clock enable Set and cleared by software. Access can be secured by GTZC_TZSC PKASEC. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub const fn sram2en(&self) -> bool
pub const fn sram2en(&self) -> bool
SRAM2 bus clock enable Set and cleared by software. Access can be secured by GTZC_MPCBB2 SECx, INVSECSTATE. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
pub fn set_sram2en(&mut self, val: bool)
pub fn set_sram2en(&mut self, val: bool)
SRAM2 bus clock enable Set and cleared by software. Access can be secured by GTZC_MPCBB2 SECx, INVSECSTATE. When secure, a non-secure read/write access is RAZ/WI. It does not generate an illegal access interrupt. This bit can be protected against unprivileged access when secure with RCC SPRIV or when non-secure with RCC NSPRIV.
Trait Implementations§
impl Copy for Ahb2enr
impl Eq for Ahb2enr
impl StructuralPartialEq for Ahb2enr
Auto Trait Implementations§
impl Freeze for Ahb2enr
impl RefUnwindSafe for Ahb2enr
impl Send for Ahb2enr
impl Sync for Ahb2enr
impl Unpin for Ahb2enr
impl UnwindSafe for Ahb2enr
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)