#[repr(transparent)]pub struct IcDataCmd(pub u32);
Expand description
I2C Rx/Tx Data Buffer and Command Register; this is the register the CPU writes to when filling the TX FIFO and the CPU reads from when retrieving bytes from RX FIFO. The size of the register changes as follows: Write: - 11 bits when IC_EMPTYFIFO_HOLD_MASTER_EN=1 - 9 bits when IC_EMPTYFIFO_HOLD_MASTER_EN=0 Read: - 12 bits when IC_FIRST_DATA_BYTE_STATUS = 1 - 8 bits when IC_FIRST_DATA_BYTE_STATUS = 0 Note: In order for the DW_apb_i2c to continue acknowledging reads, a read command should be written for every byte that is to be received; otherwise the DW_apb_i2c will stop acknowledging.
Tuple Fields§
§0: u32
Implementations§
source§impl IcDataCmd
impl IcDataCmd
sourcepub const fn dat(&self) -> u8
pub const fn dat(&self) -> u8
This register contains the data to be transmitted or received on the I2C bus. If you are writing to this register and want to perform a read, bits 7:0 (DAT) are ignored by the DW_apb_i2c. However, when you read this register, these bits return the value of data received on the DW_apb_i2c interface. Reset value: 0x0
sourcepub fn set_dat(&mut self, val: u8)
pub fn set_dat(&mut self, val: u8)
This register contains the data to be transmitted or received on the I2C bus. If you are writing to this register and want to perform a read, bits 7:0 (DAT) are ignored by the DW_apb_i2c. However, when you read this register, these bits return the value of data received on the DW_apb_i2c interface. Reset value: 0x0
sourcepub const fn cmd(&self) -> bool
pub const fn cmd(&self) -> bool
This bit controls whether a read or a write is performed. This bit does not control the direction when the DW_apb_i2con acts as a slave. It controls only the direction when it acts as a master. When a command is entered in the TX FIFO, this bit distinguishes the write and read commands. In slave-receiver mode, this bit is a ‘don’t care’ because writes to this register are not required. In slave-transmitter mode, a ‘0’ indicates that the data in IC_DATA_CMD is to be transmitted. When programming this bit, you should remember the following: attempting to perform a read operation after a General Call command has been sent results in a TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register), unless bit 11 (SPECIAL) in the IC_TAR register has been cleared. If a ‘1’ is written to this bit after receiving a RD_REQ interrupt, then a TX_ABRT interrupt occurs. Reset value: 0x0
sourcepub fn set_cmd(&mut self, val: bool)
pub fn set_cmd(&mut self, val: bool)
This bit controls whether a read or a write is performed. This bit does not control the direction when the DW_apb_i2con acts as a slave. It controls only the direction when it acts as a master. When a command is entered in the TX FIFO, this bit distinguishes the write and read commands. In slave-receiver mode, this bit is a ‘don’t care’ because writes to this register are not required. In slave-transmitter mode, a ‘0’ indicates that the data in IC_DATA_CMD is to be transmitted. When programming this bit, you should remember the following: attempting to perform a read operation after a General Call command has been sent results in a TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register), unless bit 11 (SPECIAL) in the IC_TAR register has been cleared. If a ‘1’ is written to this bit after receiving a RD_REQ interrupt, then a TX_ABRT interrupt occurs. Reset value: 0x0
sourcepub const fn stop(&self) -> bool
pub const fn stop(&self) -> bool
This bit controls whether a STOP is issued after the byte is sent or received. - 1 - STOP is issued after this byte, regardless of whether or not the Tx FIFO is empty. If the Tx FIFO is not empty, the master immediately tries to start a new transfer by issuing a START and arbitrating for the bus. - 0 - STOP is not issued after this byte, regardless of whether or not the Tx FIFO is empty. If the Tx FIFO is not empty, the master continues the current transfer by sending/receiving data bytes according to the value of the CMD bit. If the Tx FIFO is empty, the master holds the SCL line low and stalls the bus until a new command is available in the Tx FIFO. Reset value: 0x0
sourcepub fn set_stop(&mut self, val: bool)
pub fn set_stop(&mut self, val: bool)
This bit controls whether a STOP is issued after the byte is sent or received. - 1 - STOP is issued after this byte, regardless of whether or not the Tx FIFO is empty. If the Tx FIFO is not empty, the master immediately tries to start a new transfer by issuing a START and arbitrating for the bus. - 0 - STOP is not issued after this byte, regardless of whether or not the Tx FIFO is empty. If the Tx FIFO is not empty, the master continues the current transfer by sending/receiving data bytes according to the value of the CMD bit. If the Tx FIFO is empty, the master holds the SCL line low and stalls the bus until a new command is available in the Tx FIFO. Reset value: 0x0
sourcepub const fn restart(&self) -> bool
pub const fn restart(&self) -> bool
This bit controls whether a RESTART is issued before the byte is sent or received. 1 - If IC_RESTART_EN is 1, a RESTART is issued before the data is sent/received (according to the value of CMD), regardless of whether or not the transfer direction is changing from the previous command; if IC_RESTART_EN is 0, a STOP followed by a START is issued instead. 0 - If IC_RESTART_EN is 1, a RESTART is issued only if the transfer direction is changing from the previous command; if IC_RESTART_EN is 0, a STOP followed by a START is issued instead. Reset value: 0x0
sourcepub fn set_restart(&mut self, val: bool)
pub fn set_restart(&mut self, val: bool)
This bit controls whether a RESTART is issued before the byte is sent or received. 1 - If IC_RESTART_EN is 1, a RESTART is issued before the data is sent/received (according to the value of CMD), regardless of whether or not the transfer direction is changing from the previous command; if IC_RESTART_EN is 0, a STOP followed by a START is issued instead. 0 - If IC_RESTART_EN is 1, a RESTART is issued only if the transfer direction is changing from the previous command; if IC_RESTART_EN is 0, a STOP followed by a START is issued instead. Reset value: 0x0
sourcepub const fn first_data_byte(&self) -> bool
pub const fn first_data_byte(&self) -> bool
Indicates the first data byte received after the address phase for receive transfer in Master receiver or Slave receiver mode. Reset value : 0x0 NOTE: In case of APB_DATA_WIDTH=8, 1. The user has to perform two APB Reads to IC_DATA_CMD in order to get status on 11 bit. 2. In order to read the 11 bit, the user has to perform the first data byte read [7:0] (offset 0x10) and then perform the second read [15:8] (offset 0x11) in order to know the status of 11 bit (whether the data received in previous read is a first data byte or not). 3. The 11th bit is an optional read field, user can ignore 2nd byte read [15:8] (offset 0x11) if not interested in FIRST_DATA_BYTE status.
sourcepub fn set_first_data_byte(&mut self, val: bool)
pub fn set_first_data_byte(&mut self, val: bool)
Indicates the first data byte received after the address phase for receive transfer in Master receiver or Slave receiver mode. Reset value : 0x0 NOTE: In case of APB_DATA_WIDTH=8, 1. The user has to perform two APB Reads to IC_DATA_CMD in order to get status on 11 bit. 2. In order to read the 11 bit, the user has to perform the first data byte read [7:0] (offset 0x10) and then perform the second read [15:8] (offset 0x11) in order to know the status of 11 bit (whether the data received in previous read is a first data byte or not). 3. The 11th bit is an optional read field, user can ignore 2nd byte read [15:8] (offset 0x11) if not interested in FIRST_DATA_BYTE status.
Trait Implementations§
impl Copy for IcDataCmd
impl Eq for IcDataCmd
impl StructuralPartialEq for IcDataCmd
Auto Trait Implementations§
impl Freeze for IcDataCmd
impl RefUnwindSafe for IcDataCmd
impl Send for IcDataCmd
impl Sync for IcDataCmd
impl Unpin for IcDataCmd
impl UnwindSafe for IcDataCmd
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)